

Module Engineering1 (Eng1) - COM00019

Assessment
Title

Assessment 2, Cohort 2

Team Quakthulu (Team 16)

Members Aaron Price, Alec Coates, Charlie Curedale-Rayner, Eleanor Griffin-
Smith

Deliverable Risk Assessment and Mitigation

Risk Assessment & Mitigation

Introduction

Risk management is essential for software projects and involves the monitoring and

mitigation of known risks and the iterative identification and assessment of new risks. It is

crucial that problems that could threaten the project are recognised early in the development

stage and preliminary mitigation measures identified, allowing for faster recovery from the

impact that risk has had. [1]

Justification for Risk Format

Risks are defined in various forms:

1. Project risks affect the project schedule or its resources.

2. Product risks affect the quality or completeness of the product.

3. Business risks affect the organisation and how it procures or develops the software.

To manage these potential risks, the Risk Management Process (RMMM Plan) [2] will be

used. This was chosen as it will provide a complete and iterable Risk Register. It is

composed of:

● Risk Mitigation - the fundamental strategy that identifies risks, their impact, and

priority and plans for mitigation.

● Risk Monitoring - the regular review of risks and changes to their likelihood and

impact.

● Risk Management - the plan for dealing with a risk when/if it becomes a reality.

Risk Mitigation Process

To identify risks, a brainstorming team session was held before programming tasks were

assigned. Research into the specific risks involved in video game development was also

carried out [4] [5]. The goal was to keep risks simple to avoid unnecessary confusion when

further iterations of the Risk Register were completed.

Based on research [3], it was decided to define risks as follows:

● ID - an identification string so the risk is easily referrable and identified.

● Description - a description of the identified risk.

● Likelihood - the probability of the risk occurring based on a simple, three-level tier

of: Low, Moderate, High. (Simple because the project is small and non-critical).

● Severity - an expected level of impact if the risk occurs (using the same 3-tier level).

● Rank - a numerical score based on Likelihood and Severity to help prioritise and

focus on the worst risks. Colour coding has been used to make high risks more

visually apparent.

● Mitigation - plans to avoid, control or monitor the identified risks.

● Owner - an assigned owner to keep track of, highlight to the team and manage the

risks if they become a reality.

Identified risks were added to a risk register, broken down by type of risk and sorted by Rank

to prioritise key areas of focus.

Risk Monitoring & Management Process

These were implemented by including them on the agenda for the weekly team SCRUM

sessions, where the owners of said risks would discuss if any changes have occurred in

relation to their risks and if any further mitigation or management action was needed.

Tabular Presentation of Risks

Project Risks

ID Description Likeli
hood

Seve
rity

Rank Mitigation Owner

1 Tasks assigned take more
time than planned.

H M 6 Stick to the critical path.

Drop least important
requirements, if needed.

Everyone

2 Member of team fails to
complete a prerequisite
task.

M M 4 Assess where the problem lies.
Assign more people to the task
depending on the task’s
priority.

Aaron

8 Failure to build in time. M M 4 Stick to a prioritised plan of
modules to code.

Alec

9 Postpone bug fixing until it's
too late.

M M 4 Stick to a prioritised plan of
modules to debug.

Charlie

4 Code is lost. L H 3 Use GitHub to restore to a
previous version of code.

Team members to keep up to
date local copies.

Everyone

6 Failure to break down the
coding work into a detailed
and prioritised plan.

L M 2 Create a prioritised plan of
modules to code.

Charlie

7 Failure to adequately
monitor progress on tasks.

L M 2 Start monitoring adherence to
schedule at bi-weekly
meetings.

Aaron

10 Poor team coordination. L M 2 Start holding more regular
SCRUM stand-ups during
Sprints.

Eleanor

3 Unforeseen circumstances
(eg, member of team
becomes sick rendering
them absent for a period of
time from the project).

L L 1 Stick to the critical path.

Reallocate tasks as necessary.

Drop least important
requirements, if needed.

Everyone

5 Sections of the code in the
GitHub repository are not
up to date resulting in
inconsistent code.

L L 1 Team members to commit and
pull from GitHub frequently (at
least daily).

Create branches, if needed.

Everyone

11 Failure to allocate time for
quality assurance (eg,
quality of code, creatives).

L L 1 Stick to a prioritised plan of
modules to code (including
time for quality control).

Audit process to review code
for quality and documentation
prior to integration.

Alec

Product Risks

ID Description Likel
ihoo
d

Seve
rity

Rank Mitigation Owner

15 The code is not subject to
rigorous testing for
bugs/issues leading to the
submitted version being
inadequate.

M H 6 Create a test plan to use during
the testing phase.

Create a time plan and review
of adherence to schedule at
meetings.

Aaron

17 Failure to playtest the "fun
factor" so the end customer
won't bid for the game/buy
it. "Fun factor" is to include
game play (per the product
brief) that is challenging, but
not too difficult, smooth and
intuitive.

M M 4 Proper prototyping and
playtesting with balancing
between legs, and beta tester
to confirm controls are smooth
and intuitive in the prototype.

Charlie

14 Lack of programming ability
leads to features missing
from the final product.

L H 3 Allocate coding tasks
according to team ability.

Eleanor

16 The chosen Java library
(LibGDX) is no longer
supported.

L H 3 Transition to one of the other
researched libraries.

Aaron

12 The features desired by the
stakeholder are not
implemented.

L H 3 Request another customer
meeting to discuss
requirements.

Alec

18 The look (art assets) of the
game is not appealing.

L M 2 Allocate sprite creation to team
members with experience with
graphic design.

Charlie

13 Advanced features are
implemented before/instead
of fundamental features.

L L 1 It’s impossible to implement
this product’s advanced
features before the
fundamentals.

Aaron

Business Risks

ID Description Likel
ihoo
d

Seve
rity

Rank Mitigation Owner

19 The final product is
incomplete.

M H 6 Detail and document any
missing features.

Charlie

20 The code is not iterable or
able to be further
developed due to poorly
designed code and being
undocumented.

L H 3 Hold meetings to review code
for quality.

Eleanor

21 The wrong game engine is
chosen.

L H 3 Research another game
engine.

Eleanor

Bibliography

1. Risk Management Approach And Plan, Mitre. Accessed on: October 15, 2020.

[Online]. Available: https://www.mitre.org/publications/systems-engineering-

guide/acquisition-systems-engineering/risk-management/risk-management-

approach-and-plan

2. Risk Management in Software Engineering, TutorialRide.com. Accessed on: October

15, 2020. [Online]. Available: https://www.tutorialride.com/software-engineering/risk-

management-in-software-engineering.html

3. Software Development Risk Management Plan with Examples, Cast Software.

Accessed on: October 15, 2020. [Online]. Available:

https://www.castsoftware.com/research-labs/software-development-risk-

management-plan-with-examples

4. Risk Management: What, Why and How, LeonardPerez.net. Accessed on: October

20, 2020. [Online]. Available: http://leonardperez.net/risk-management-what-why-

and-how/

5. M Schmalz, H Taylor, Risk Management in Video Game Development Projects,

ResearchGate. January 2014. Accessed on: October 20, 2020. [Online]. Available:

https://www.researchgate.net/publication/262250152_Risk_Management_in_Video_

Game_Development_Projects

6. I. Sommerville, Software Engineering, 8th Ed., Addison-Wesley, 2007, Chapter 5.4

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank

