

Module Engineering1 (Eng1) - COM00019

Assessment Title Assessment 2, Cohort 2

Team Quackthulu (Team 16)

Members Aaron Price, Alec Coates, Charlie Curedale-Rayner, Eleanor Griffin-
Smith

Deliverable Requirements

Introduction

Prior to developing and implementing code, the team decided it best to set out project

requirements. This would:

● aid in the development process.

● help to keep the project on track with stakeholders’ goals.

● prevent the team from working on any unnecessary features.

This was done at the start of the project to avoid common pitfalls that had been outlined

through research, such as the tendency to make assumptions, and eliciting unbounded and

vague requirements. [1]

The requirements were broken down into the following categories based on our research:

User, Functional, and Non-Functional. [2]

Throughout the process of identifying and formatting requirements, the definition of a well-

defined requirement was focused on: A well-defined requirement is a statement of system

functionality that must have proof of its validation and must be met to achieve a customer's

objective for a system. [3]

How requirements were elicited and negotiated

After reading the project brief document, a brainstorming session took place in which the

team outlined a list of clarifications that would be needed before eliciting requirements. These

were taken to a Customer meeting, in which the stakeholders were asked to make these

clarifications, and their responses were noted so they could be used to outline the

capabilities of the system [4]. This proved useful when finalising requirements. This method

was used again during assessment 2.

Due to the team only being a team of 4 the following requirement were removed from our

project: Implement five power-up packs, which can be found floating down the

river and be picked up by boats. These might include patching

materials that allow partially restoring robustness, or temporarily

improving some other characteristic (e.g., speed).

With this information, a Single Statement of Need (SSON) was created alongside a final list

of User Requirements for the project.

Our SSON is as follows: “The system should allow users to compete in an exciting and

strategic single player boat race game of varying difficulty and have the ability to save and

return later”.

The SSON acted as a guide for maintaining focus on the system requirements that would be

used in the Architecture plan.

Why requirements are presented as they are

To format the elicited set of requirements, the ‘IEEE Guide for Developing System

Requirements Specification’ provided substantial insight into a sensible format and the

necessary level of detail for the requirements.

To distinguish types of requirements, colours were used to highlight differences, making the

reflection process ergonomic. A tabular approach was decided upon as it neatly stored the

information and meant it would be easily adaptable in case of further change.

Alongside requirements, constraints and use cases (see Appendix) were defined to help

meet the stakeholders’ goals.

Risks associated with these requirements are detailed in the table below and were then

addressed during risk assessment and mitigation.

User Requirements

Requirement
ID

Description Risks and Assumptions (if
relevant)

Priority
Level

UR_MAINTAI
N_PREVIOU
S

Maintain the previous
assessment user requirements.
(find in assessment 1
deliverables section of website).

May cause issues when
implementing new requirements.

Shall

UR_CHOOS
E_DIFFICUT
Y

The player can select at what skill
level they want to play at.

The player may not enjoy the
game if the difficulties re too
extreme.

Shall

UR_SAVE The player can save the status of
the game at any point.

Must be fully implemented or the
function could be used to cheat.

Shall

UR_LOAD The player can load their
previous save and continue
playing the game.

Must be fully implemented or the
function could be used to cheat.

Shall

System Requirements - Functional

Requirement
ID

Description Risks and Assumptions

Design
Requirement

FR_MAINTAI
N_PREVIOU
S

Maintain the previous
assessment functional
requirements. (find in
assessment 1 deliverables
section of website)

May cause issues when
implementing new
requirements.

UR_MAINTAIN_PR
EVIOUS

FR_DIFFICU
LTY

Depending on which
difficulty is selected, the
obstacles, and other boat
AI will change

The hard level should not
be impossible.

UR_CHOOSE_DIFF
ICUTY

FR_DIFFICU
LTY_SCREE
N

The game should launch a
screen where the player
can select a difficulty.

The player may not know
where to navigate to from
the screen.

UR_CHOOSE_DIFF
ICUTY

FR_SAVE The game must store all
positions and variable of a
race at the moment it is
saved.

All variables must be saves
to completely save the
players progress.

UR_SAVE

FR_SAVE_S
CREEN

The game should launch a
screen where the player
can save their progress

The player may not know
where to navigate to from
the screen.

UR_SAVE

FR_LOAD All variables are loaded
and the user may continue

All variable must be loaded
to properly restore the

UR_LOAD

to play game.

FR_LOAD_S
CREEN

The game should launch a
screen where the player
can select which save they
want to load

The player may not know
where to navigate to from
the screen.

UR_LOAD

System Requirements - Non-Functional

Requirement
ID

Description User
Requirements

Fit Criteria Risks and
Assumptions

NFR_MAINT
AIN_PREVIO
US

Maintain the
previous
assessment non-
functional
requirements.
(find in
assessment 1
deliverables
section of
website)

All previous All previous May cause issues
when implementing
new requirements

NFR_DIFFIC
ULTY

Difficulty settings
should be logical
and not too
extreme.

UR_CHOOSE_
DIFFICUTY

New player should
be able win on
easy most of the
time. It takes
experience to win
on hard.

Assumes the user is
aware of the rules
and makes
reasonable choices.

NFR_QUICK
_LOAD

Player must be
able to save and
lead their game
in a reasonable
amount of time.

UR_LOAD
UR_SAVE

Player must be
able to load a game
in under 5 seconds.

Assumes player has
hard drive space.

Constraints

Requirement ID Description

CON_APPOPRIA
TE

The game shouldn’t contain explicit or graphic content, such as blood or
gore, and should be suitable for any user in the target audience.

CON_LANGUAG
E

The game must be programmed in Java.

CON_RUN The game should be able to run on any University of York Computer Science
Department computer, running Windows or Linux.

CON_ACCESSIB
LE

The game must use colours with high contrast to ensure all users can play it.

CON_COURSE Must be based on the river course in York

References

● [1] ‘IEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233,

1998 Edition, pp. 14, Dec. 1998. [Accessed: 05 Nov. 2020]

● [2] D. Thakur, (2013, November.23), What is Software Requirement? Types of

Requirements. [Online]. Available: https://ecomputernotes.com/software-

engineering/softwarerequirement. [Accessed: 05 Nov. 2020].

● [3] ‘IEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233,

1998 Edition, pp. 11, Dec. 1998. [Accessed: 05 Nov. 2020]

● [4] ‘IEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233,

1998 Edition, pp. 16, Dec. 1998. [Accessed: 05 Nov. 2020]

Appendix

1 - Use Case For “Qualifying for the final race”

● Primary Actor: Player

● Precondition: Player has completed 3 legs and health has not fell below 0

● Trigger: Player has completed the third leg

● Main Success Scenario:

1. System tracks fastest times across all 3 qualifying legs

2. Player has achieved one of the fastest times

● Secondary scenarios:

1. Player has not achieved one of the fastest times

2. Player loses the game. Loss screen is displayed.

● Success Postcondition: Player proceeds to the final race

● Minimal Postcondition: Player does not qualify for the final race. Player loses the

game.

2 - Use Case For “Achieving a Medal”

● Primary Actor: Player

● Precondition: Player has qualified for the final race

● Trigger: The start of the final race

● Main Success Scenario:

1. System tracks time taken for boat to cross the finish line

2. Player crosses the finish line

3. Player achieved one of the fastest three times

● Secondary scenarios:

 1.1 Player does not complete the race, health has fallen below 0

 1.1.1 Player loses the game

 2.1 Player does not achieve one of the fastest three times

 2.1.1 Player loses the game

● Success Postcondition: Player is awarded 1st, 2nd or 3rd place medal.

● Minimal Postcondition: Player does not achieve top 3 position. Player loses the game.

3 - Use Case For “Resume game”

● Primary Actor: Player

● Precondition: Player has saved a game

● Trigger: Player clicks save file button

● Main Success scenario:

1. Systems checks that save file exists

2. The file exists and is in full working order

● Secondary scenarios:

1. Systems checks that save file exists

2. The file exists and is corrupted

● Success Postcondition: Game screen loaded at the point it was saved at.

● Minimal Postcondition: Game screen does not load and player is redirected to menu

screen.

