Module

Engineering1 (Eng1) - COM00019

Assessment Title

Assessment 1, Cohort 2

Team Dragon Boat Z (Team 18)

Members Robert Dalgleish, Benjamin Jenner, Joseph Lonsdale, Richard
Upton, James Wilkinson, Xinyi Zhang

Deliverable Requirements

Introduction

Prior to developing and implementing code, the team decided it best to set out project
requirements. This would:

e aid in the development process.
e help to keep the project on track with stakeholders’ goals.
e prevent the team from working on any unnecessary features.

This was done at the start of the project to avoid common pitfalls that had been outlined
through research, such as the tendency to make assumptions, and eliciting unbounded and
vague requirements. [1]

The requirements were broken down into the following categories based on our research:
User, Functional, and Non-Functional. [2]

Throughout the process of identifying and formatting requirements, the definition of a
well-defined requirement was focused on: A well-defined requirement is a statement of
system functionality that must have proof of its validation and must be met to achieve a
customer's objective for a system. [3]

How requirements were elicited and negotiated

After reading the project brief document, a brainstorming session took place in which the
team outlined a list of clarifications that would be needed before eliciting requirements.
These were taken to a Customer meeting, in which the stakeholders were asked to make
these clarifications, and their responses were noted so they could be used to outline the
capabilities of the system [4]. This proved useful when finalising requirements.

With this information, a Single Statement of Need (SSON) was created alongside a final list
of User Requirements for the project.

Our SSON is as follows: “The system should allow users to compete in a single player game,
racing as a boat in a Dragon Boat race against Al opponents across three legs, where the 3
fastest boats across these legs will proceed to a final, that can be displayed to end users in
Open Day demonstrations”.

The SSON acted as a guide for maintaining focus on the system requirements that would be
used in the Architecture plan.

Why requirements are presented as they are

To format the elicited set of requirements, the ‘IEEE Guide for Developing System
Requirements Specification’ provided substantial insight into a sensible format and the
necessary level of detail for the requirements.

To distinguish types of requirements, colours were used to highlight differences, making the
reflection process ergonomic. A tabular approach was decided upon as it neatly stored the
information and meant it would be easily adaptable in case of further change.

Alongside requirements, constraints and use cases (see Appendix) were defined to help
meet the stakeholders’ goals.

Risks associated with these requirements are detailed in the table below and were then
addressed during risk assessment and mitigation.

User Requirements

If the user comes 1st, 2nd or 3rd | Too difficult to come in the top 3. | Shall
in the final, they must be awarded
the corresponding medals.
If the user’s fastest leg is fast Too difficult to place into the final. | Shall
enough, they will compete in the
final.
The competition is lost either if There are enough obstacles and | Shall
the player does not make the damage that can be done to the
final, places lower than 3rd place | boat to reach an energy level of
in the final or their boat energy 0.
level reaches 0.
The game should be playable May result in the game being Shall
and enjoyable to the target considered boring in an effort to
audience. please everyone.
There should be a variety of Some boats may end up Shall
unique boats for the user to unbalanced and make the game
choose from. unfair.
There should be at least 4 boats | Too few boats could make the Shall
in each race. game boring as there’s not
enough competition.
Controls should follow standard The standard controls may be May
conventions or be explained at followed blindly, without the user
the beginning and easy to use. understanding fully what they are
doing.
The game should get The game could end up too Shall
progressively difficult for each difficult for the user, making them
race. likely to quit.
Each race shouldn’t be too long. Races could go on too long, Should
making the entire competition
drag on and become boring to
play.
The game should follow standard | The conventions could be May
conventions. followed where it doesn’t make
sense for the game.

System Requirements - Functional

Requirement
ID

Description

Risks and Assumptions

Design

Requirement

FR_UNIQUE | Each boat must have Some boats may be UR_BOATS
BOATS unique statistics. ‘unbalanced’ and either too
- Robustness powerful or weak. This
Maneuverability would affect the
Max Speed competitiveness of the
Acceleration game poorly.
FR_TIMER The system must track the | Assumes that built in time UR_FINAL_RACE,
- time during the race. tracking functions are UR_FINAL_PLACE
accurate.
FR_FINISH The system must Assumes the user crosses | UR_FINAL_RACE,

recognise when the user’s
boat crosses the finish line
and calculate the time
taken.

the finish line. Also
assumes that there is a
working timing function.

UR_FINAL_PLACE

FR_OBSTAC | The system must randomly | Obstacles may cause too UR_DIFFICULTY
LES generate obstacles on the | much damage to the boat,
course. meaning the player can
survive very few hits -
making it unplayable.
FR_OBSTAC The number of obstacles Too many obstacles at once | UR_DIFFICULTY
LE INCREA | over the length of the could make the course
SE course should increase for | impossible to pass without
each race. going outside the lane.
FR_TIREDN | The energy of the crew Rate of tiring may be so UR_DIFFICULTY
ESS should decrease over time. | high that the race takes too
This carries over through long to complete.
each race.
FR Ul There should be a Ul Ul may be too cluttered or UR_PLAYABLE,
- showing the boats have an unclear layout. UR_CONVENTION
robustness and the energy | Could obstruct other parts S
of the crew. of the game.
FR ANIMATI | There should be Assumes the hardware is UR_PLAYABLE
ON_S animations in the game, capable of playing
such as movement of animations along with the
boats. rest of the game.
FR_COLLISI | Upon collision with an Damage done may make UR_DIFFICULTY,
ONS obstacle, the robustness of | the game too difficult or not | UR_LOSS
the boat will decrease. be enough of a challenge.
FR_PENALT | Total time outside the Penalty could be too harsh | UR_DIFFICULTY
Y user’s lane will result in a or not enough of a deterrent
time penalty. to stop the player leaving
their lane. Also assumes
that there is a working
timing function.

FR_LANE_W | The user should receive a | Warning could obstruct the | UR_PLAYABLE,
ARNING warning if they leave their player’s view of the game UR_CONVENTION
lane. and therefore, ability to S

move back into their lane.
FR_SPEED_ | The user should be able to | Control sensitivity could UR_CONTROLS,
CONTROL control the speed of the hinder the player’s ability to | UR_PLAYABLE
boat control the speed how they
want.
FR_COURSE | Boats should not be able to | Boats may leave the course | UR_PLAYABLE,
BOUNDARI | leave the course. and get stuck or be able to | UR_CONVENTION
ES cheat. S
FR_TITLE_S | The game should be able The player may not know UR_CONVENTION
CREEN to launch into a title screen. | where to navigate to from S
the title screen.
FR_AI Other boats in each race Al could be too good at the | UR_PLAYABLE,
should be controlled by game for the player to beat, | UR_CONVENTION
their own Al. or alternatively too easy to S
beat - making the game
boring.
FR_MUSIC The game should have Background music could be | UR_PLAYABLE,

some background audio.

distracting or too loud for
the player.

UR_CONVENTION
S

System Requirements - Non-Functional

The system
should respond
quickly to user

UR_PLAYABLE

The response
should happen
<0.5 second after

Assumes the user
gives a valid input.

input from the the input is

mouse and pressed.

keyboard.

The game should | UR_TIME Each race takes no | Assumes the player
be completable in longer than 2 moves the boat

a reasonable minutes. along the course.
length of time.

The user should | UR_PLAYABLE [Ul changes/ alerts | Players may be

be informed of happen within <0.5 | unaware of

any changes seconds of the changes.

quickly. trigger event.

Animations UR_PLAYABLE | Game should run Assumes hardware
should run at a minimum of 30 | is capable of
smoothly. FPS. running a basic

game at 30 FPS.

Graphics look
like the objects
they represent.

UR_PLAYABLE

Players should be
able to identify all
graphical assets.

Players will be
confused and the
game may be
unplayable if assets
are not identifiable.

Constraints

The game shouldn'’t contain explicit or graphic content, such as blood or
gore, and should be suitable for any user in the target audience.

The game must be programmed in Java.

The game should be able to run on any University of York Computer Science
Department computer, running Windows or Linux.

The game must use colours with high contrast to ensure all users can play it.

Must be based on the river course in York

References

[1] ‘IEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233,
1998 Edition, pp. 14, Dec. 1998. [Accessed: 05 Nov. 2020]

[2] D. Thakur, (2013, November.23), What is Software Requirement? Types of
Requirements. [Online]. Available:
https://ecomputernotes.com/software-engineering/softwarerequirement. [Accessed:
05 Nov. 2020].

[3] ‘IEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233,
1998 Edition, pp. 11, Dec. 1998. [Accessed: 05 Nov. 2020]

[4] ‘IEEE Guide for Developing System Requirements Specifications’, IEEE Std 1233,
1998 Edition, pp. 16, Dec. 1998. [Accessed: 05 Nov. 2020]

Appendix

1 - Use Case For “Qualifying for the final race”

Primary Actor: Player
Precondition: Player has completed 3 legs and health has not fell below 0
Trigger: Player has completed the third leg
Main Success Scenario:
1. System tracks fastest times across all 3 qualifying legs
2. Player has achieved one of the fastest times
Secondary scenarios:
1. Player has not achieved one of the fastest times
2. Player loses the game. Loss screen is displayed.
Success Postcondition: Player proceeds to the final race
Minimal Postcondition: Player does not qualify for the final race. Player loses the
game.

2 - Use Case For “Achieving a Medal”

Primary Actor: Player
Precondition: Player has qualified for the final race
Trigger: The start of the final race
Main Success Scenario:
1. System tracks time taken for boat to cross the finish line
2. Player crosses the finish line
3. Player achieved one of the fastest three times
Secondary scenarios:
1.1 Player does not complete the race, health has fallen below 0
1.1.1 Player loses the game
2.1 Player does not achieve one of the fastest three times
2.1.1 Player loses the game
Success Postcondition: Player is awarded 1st, 2nd or 3rd place medal.
Minimal Postcondition: Player does not achieve top 3 position. Player loses the game.

