
Module Engineering1 (Eng1) - COM00019

Assessment
Title

Assessment 2, Cohort 2

Team Quakthulu (Team 16)

Members Aaron Price, Alec Coates, Charlie Curedale-Rayner, Eleanor Griffin-
Smith

Deliverable Implementation

Implementation - Part A

Code for the game can be found on our GitHub repository:
https://github.com/AlecCoates/Dragon-Boat-Z

Implementation - Part B

Requirements and Architecture Implementation:

UR_MAINTAIN_PREVIOUS:
FR_MAINTAIN_PREVIOUS - we have not drastically changed the previous teams code in
any major way. All of their code still runs in the way the previous team intended.

UR_CHOOSE_DIFFICUTY:

FR_DIFFICULTY_SCREEN - when first starting the game the user is given a choice of
Easy, Medium or Hard. This decision affects the number of obstacles that are generated in
each lane and subsequent leg of the game.

FR_DIFFICULTY - the selected difficulty from the difficulty screen is 1 for easy, 2 for
medium and 3 for hard. This integer value is then multiplied by the leg difficulty and this
becomes the number of objects that are created.

UR_SAVE:
FR_SAVE_SCREEN - during a race a user can press the escape key to bring up the pause
menu, and select the save/load option. This in turn brings up a saving and loading screen
where the user may save up to 3 times. They also have the option to delete saves.

FR_SAVE - our implementation uses a JSON file to save our game data. If the option to
save the current state is selected from the save screen then a SaveLoadGame object is
generated. This object, using the current state of the game, goes through all the necessary
data structures and either calles their saveState method, which converts the object to a json
friendly format, or directly saves the data to the json file. Depending on the save slot chosen
in the menu a file with an appropriate name is generated and filled with the collected data.

UR_LOAD:
FR_LOAD_SCREEN - SEE FR_SAVE_SCREEN

FR_LOAD - upon the selection of a load button a previously described save file is loaded up

and iterated through setting each piece of data to a new object of the same class as it was
saved from.

Significant and new features:

Sprite Descriptor classes - The libGDX library has a json class that we utilized to save out
game data. The only problem is that the json class is only able to save primitive data types,
thus we needed a way to represent a class of complex variables as a class with only
primitive variables. We researched the idea of a sprite descriptor class where each class we
wished to save has a subclass of only primitive types that could be converted to the json
format by the libGDX class and saved with ease.

Significant changes made to the previous software:

We have made no significant changes to the previous teams code. All of the code we were
given still functions. The only changes we made were adding our own code and thus nothing
has changed.

https://github.com/AlecCoates/Dragon-Boat-Z

Not (fully) implemented:

Power Ups - Due to our lack of teammates the requirements of power ups has been dropped
from our requirements and implementation.

